Contents

Foreword .. 3
Executive summary ... 4
Definition ... 5
Introduction .. 8
 Sous vide processing .. 9
 Concerns about food safety ... 10
Food safety hazards .. 11
 1.1 Low temperature cooking – bacterial growth ... 11
 1.2 Product cooling – bacterial growth .. 16
 1.3 Extended refrigerated storage of food – botulism ... 18
 1.4 Extended refrigerated storage of food – listeriosis .. 19
 1.5 Product reheating – bacterial growth ... 20
 1.6 Serving raw or undercooked foods – infectious bacteria, parasites and viruses 24
Conclusion .. 28
References ... 29
Appendix – Variation to the 2-hour/4-hour rule .. 32
Sous vide translates from the French as ‘under vacuum’. In culinary terms it has come to mean a process of cooking under vacuum in sealed pouches (oxygen barrier bags), at precise (and sometimes low) temperatures and often for long times. Sous vide can be used to prepare foods with an extended shelf life for retail sale or use in food service. However, sous vide can also be used to prepare foods with qualities that cannot be achieved when using traditional cooking techniques. Some sous vide recipes result in food that remains raw or undercooked.

This document includes information on the service of raw and undercooked foods. This information is provided in response to a growing trend for sous vide use by restaurants and to encourage the use of safer choices for this type of product: it is not an endorsement of the service of raw or undercooked foods. The onus of delivering a safe product to the consumer resides with the business.

Standard 3.2.2 of the Australia New Zealand Food Standards Code (Food Standards Code) states that when processing food, a food business must:

> where a process step is needed to reduce to safe levels any pathogens that may be present in the food, use a process step that is reasonably known to achieve the microbiological safety of the food.

Cooking is a process known to achieve the microbiological safety of food and by choosing to serve raw or undercooked animal foods, restaurateurs must acknowledge that there will be a residual public health and business risk.

Section 1.6 of this document provides details on the public health risks of raw and undercooked foods. As an alternative to the service of raw or undercooked foods, chefs should first consider the service of cooked food prepared using times and temperatures outlined in Table 2 or Table 3.
Executive summary

There are several types of sous vide foods. This document is about food safety hazards of cook serve and short term cook chill sous vide foods. Some issues are common to the extended shelf life sous vide foods but guidance on the preparation of these foods is readily available.

Sous vide seems like a new food service technology but it has a history spanning nearly five decades in France and nearly three decades in other international marketplaces. It finds application in many market segments including extended shelf life ready meals. It is also found in catering companies, restaurants and, increasingly, sous vide has been embraced by home cooks.

While there is little evidence of sous vide food causing outbreaks of foodborne illness¹, there is a reason why sous vide causes concern to regulators. There are foreseeable hazards in three broad areas that must be managed:

1. Foods held in the temperature danger zone, defined as between 5°C and 60°C by the Food Standards Code, for extended periods are potentially subject to bacterial growth. For example, during low temperature long time (LT LT) cooking processes, product cooling or product reheating.

2. Foods stored under refrigeration for extended periods are potentially subject to growth by cold tolerant pathogens. The growth of Listeria monocytogenes is a risk as is growth and toxin production by non-proteolytic Clostridium botulinum.

3. Food cooked at low temperatures for short periods will, in essence, remain raw and pathogenic bacteria, parasites and viruses, if present, might survive.

The risks associated with sous vide foods can be reduced if:

- thinner portions of food are prepared so that heating and cooling are rapid.
- overcrowding of product in the water bath is avoided. Overcrowding can affect cooking times and increase the chance of cold spots occurring. The time of cooking will need to be increased to compensate.
- water bath temperatures of at least 55°C are used so that the growth of Clostridium perfringens is first prevented and then destruction of the cells commences.
- the time food is held below 54.5°C during cooking is limited to six hours.
- commercial equipment with adequate heating capacity and excellent temperature control is used.
- water and/or food temperatures are checked using a tip sensitive digital thermometer that is accurate to 0.1°C.
- prepared foods are not stored for extended times unless processes have been validated.
- risks are not compounded. Cooking large portions of mechanically tenderised meat for extended times at low temperatures would be irresponsible.

If you choose to include on your menu foods that remain essentially raw, you must make clear the health implications the food could pose to the consumer. New practitioners of sous vide must be aware of the food safety risks and avoid overly experimental applications of the technology. Today’s leaders in sous vide produce quality food without losing sight of food safety.

¹ There were 3 foodborne illness cases reported in 2014
Definition

| 2-hour/4-hour rule | The rule provides options for what can be done safely with ready-to-eat potentially hazardous food, depending on how long it has been at temperatures between 5°C and 60°C. The time between 5°C and 60°C is cumulative — that means you need to add up every time the food has been out of the fridge, including during preparation, storage, transport and display. If the total time is:
Less than 2 hours, the food may be used immediately or refrigerated for later use,
Between 2 and 4 hours, the food must be used immediately (can’t be put back in the fridge), and
4 hours or longer, the food must be thrown out.
It provides an alternative to temperature control specified in Standard 3.2.2 of the Food Standards Code (i.e. food must be kept at or below 5°C, or at or above 60°C).
Safe Food Australia – Appendix 2 (2016) |
| Cleaning | A process that removes visible contamination such as food waste, dirt and grease from a surface, equipment and utensil. This process usually achieved by the use of water and detergent. During the cleaning process, microorganisms will be removed, but the cleaning process is not designed to destroy microorganisms.
Safe Food Australia – Appendix 6 (2016) |
| Cook chill – Extended Shelf Life (ESL) | A food that is given a cooking process of 90°C for 10 minutes or equivalent and has a refrigerated shelf life of more than 10 days.
This process delivers a 6-log reduction of non-proteolytic Clostridium botulinum.
| Cook chill – Short Shelf Life (SSL) | A food that is given a cooking process of 70°C for 2 minutes or equivalent and has a refrigerated shelf life of no more than 10 days at or below 5°C (including the days of production and consumption).
This process delivers a 6-log reduction in Listeria monocytogenes.
| Cooling cooked potentially hazardous food | A food business must, when cooling cooked potentially hazardous food, cool the food –
Within two hours – from 60°C to 21°C; and
Within a further four hours – from 21°C to 5°C.
Standard 3.2.2 of the Food Standards Code |
Food Standards Code
It refers to the Australian New Zealand Food Standards Code. It includes standards for food composition, level of contaminants and labelling of the food supply in Australia and New Zealand. These standards are adopted by the States, Territories and New Zealand to form the local food regulations and they are enforced on a local level.

Hazard
A biological, chemical or physical agent in, or condition of, food that has the potential to cause an adverse health effect in humans.

Standard 3.1.1 of the Food Standards Code

Potentially hazardous food
Food that has to be kept at certain temperatures to minimise the growth of any pathogenic microorganisms that may be present in the food or to prevent the formation of toxins in the food.

Examples of potentially hazardous foods:
- raw and cooked meat/poultry or foods containing raw or cooked meat/poultry (e.g. burgers, curries, kebabs, pate and meat pies),
- foods containing eggs (cooked or raw), beans, nuts or other protein-rich food (e.g. batter, mousse, quiche and tofu),
- dairy products and foods containing dairy products (e.g. milk, dairy-based desserts, bakery products filled with fresh cream or with fresh custard),
- seafood (excluding live seafood) and foods containing seafood (e.g. sushi),
- sprouted seeds (e.g. bean sprouts and alfalfa),
- prepared fruits and vegetables (e.g. cut melons, salads and unpasteurised juices),
- cooked rice and both fresh and cooked pasta, and
- foods that contain any of the above foods (e.g. sandwiches, pizzas and rice rolls).

Standard 3.2.2 of the Food Standards Code & Safe Food Australia – Appendix 1 (2016)

Sanitising
A process that destroys microorganisms, reducing the numbers present on a surface to a safe level. This is usually achieved by the use of both heat and water, or by specific sanitising chemicals.

[Note: detergents are generally not sanitisers].

Safe Food Australia – Appendix 6 (2016)

Sous vide
An interrupted\(^2\) catering system in which raw or par-cooked food is sealed in a vacuumed laminated plastic pouch or container, heat treated by controlled cooking, rapidly cooled, and then reheated for service after a period of chilled storage.

\(^2\) Interrupted – implies a holding step, as in cook chill as opposed to cook serve for immediate use.
| Temperature control | Maintaining food at a temperature of –
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) 5°C, or below if this is necessary to minimise the growth of infectious or toxigenic microorganisms in the food so that the microbiological safety of the food will not be adversely affected for the time the food is at that temperature; or</td>
</tr>
<tr>
<td></td>
<td>(b) 60°C or above; or</td>
</tr>
<tr>
<td></td>
<td>(c) Another temperature – if the food business demonstrates that maintenance of the food at this temperature for the period of time for which it will be so maintained, will not adversely affect the microbiological safety of the food.</td>
</tr>
</tbody>
</table>

Standard 3.2.2 of the Food Standards Code
Introduction

This chart illustrates the variety of processes used to prepare *sous vide* foods. The blocks with bold font and pink-striped fill relate to extended shelf life products such as ready meals or foods produced by some large caterers. Further explanation of the *sous vide* processing options detailed in the chart can be found in the pages following Figure 1. The guidance in this document does not address specific issues relating to extended shelf life *sous vide* products, for example those with a shelf life greater than ten days.

The Wide Spectrum of *Sous Vide*

![Diagram of sous vide processes](attachment:image.png)

Figure 1. Sous vide processing
Sous vide processing

Sous vide translates from the French as ‘under vacuum’. In culinary terms it has come to mean a process of cooking under vacuum in sealed pouches (oxygen barrier bags), at precise (and sometimes low) temperatures and often for long times. Creed (1998) quotes the widely accepted definition developed by the *Sous Vide* Advisory Committee (SVAC):

Sous vide (also known as *Cuisine en Papillote Sous Vide*) is an interrupted\(^3\) catering system in which raw or par-cooked food is sealed in a vacuumed laminated plastic pouch or container, heat treated by controlled cooking, rapidly cooled, and then reheated for service after a period of chilled storage.

Sous vide can be used to prepare foods with an extended shelf life for retail sale or use in food service. In these examples the ‘interrupted catering system’ is the relevant characteristic. However, *sous vide* can also be used to prepare foods with qualities that cannot be achieved when using traditional cooking techniques. In this instance ‘in-pouch’ cooking under precise and often sensitive conditions provides the sought-after characteristics and refrigerated or frozen storage might not be part of the process.

The wide range of products known as *sous vide* can be divided into four broad categories.

- **Processed 90/10.** Heated to reduce the numbers of non-proteolytic *Clostridium botulinum* by 99.9999%. This more robust process is likely to be used for retail ready meals or extended shelf life cook chill foods. One conventional process calls for the slowest heating part of the food to be exposed to a combination of temperature and time equivalent to 90°C for 10 minutes. Lower temperatures can be used but exposure times increase significantly.

- **Processed 70/2.** Heated to reduce the numbers of *Listeria monocytogenes* by 99.9999%. This is commonly known as food pasteurisation and it could be used by restaurants, caterers and some manufacturers of extended shelf life foods. One conventional process calls for the slowest heating part of the food to be exposed to a combination of temperature and time equivalent to 70°C for 2 minutes. Lower temperatures can be used but exposure times increase significantly.

- **Cooked.** This term mainly refers to taste, texture and appearance but it has also become associated with certain minimum heating processes for meats. Cooked but not necessarily pasteurised foods will be encountered in restaurants and home *sous vide*. One process specified by the US Food Safety Inspection Service (FSIS, 2011) calls for the slowest heating part of the food to be heated to 63°C followed by a 3- minute rest time. Lower temperatures can be used to prepare rare meats but exposure times increase significantly. Higher temperatures are specified for poultry and mechanically tenderised, injected, comminuted or stuffed meats. Extended times can be used to tenderise cheaper cuts of meat.

- **Lightly processed.** Some *sous vide* recipes do not result in cooked food. Any contaminant and pathogenic bacteria, parasites or viruses that might be present are likely to survive.

In food service operations *sous vide* foods will generally be cooked in a finely controlled circulating water bath or a combination steam/forced convection oven. Larger catering companies or manufacturers preparing ready meals might use an enclosed vessel (sometimes called a retort) with a water cascade system to first heat and then cool the pouches of food.

\(^3\) Interrupted – implies a holding step, as in cook chill as opposed to cook serve for immediate use.
Concerns about food safety

Sous vide has been embraced by a number of celebrity chefs and the use of the technique is spreading in culinary circles. A similar surge in popularity of sous vide in New York CBD restaurants, in part, resulted in an effective ban on ‘reduced oxygen packaging’ (ROP) pending individual approval from the city’s Department of Health and Mental Hygiene (NY Times, 2006). One concern was that chefs trained in sous vide, aware of the hazards, had been joined by those who were not aware. The Department was concerned that ROP suppressed the growth of spoilage bacteria while providing a suitable environment for pathogens such as *L. monocytogenes* and *C. botulinum*. To gain approval to use ROP, food establishments were required to have a food safety plan for each food item and multiple barriers against the growth of *Listeria* and *Clostridium* were required (e.g. pH, water activity).

Retail sous vide foods such as ready meals and, more generally, vacuum packed and modified atmosphere chilled foods, have a good record of food safety. The Institute of Food Research (Peck et al, 2006) found no cases of foodborne botulism could be attributed to correctly stored commercial chilled foods in the UK or overseas. Guidance on the preparation of sous vide ready meals and cook chill foods generally is readily available—see Cox and Bauler (2008), UKFSA (2008) and FSAI (2006). These documents do not address food safety risks for ready meals and other extended shelf life foods, although many of the issues of restaurant sous vide overlap with those for extended shelf life foods.

The extent of foodborne illness attributable to restaurant prepared sous vide is not as clear, but reports of foodborne illness are at least rare, although some reports of illness explicitly naming sous vide foods have been found in the scientific literature. In 2014, *Salmonella* Enteritidis and sous vide were implicated in complaints against two restaurants in Canada. Two of the three cases were from one restaurant and sous vide eggs were determined to be the cause, while sous vide duck breast was determined to be the likely cause for the other case from the second restaurant. Investigations at both restaurants revealed inadequate sous vide cooking practices that did not fully cook the food (McIntyre et al, 2017).

There are many hazards that must be managed with sous vide food. Sous vide literature has focussed on botulism, but there are other potential hazards that have received less attention. Sous vide hazards fall into three areas:

- Foods held in the temperature danger zone (between 5°C and 60°C) for extended periods are potentially subject to bacterial growth, for example, during
 - low temperature long time (LT LT) cooking processes,
 - product cooling, or
 - product reheating.
- Foods stored under refrigeration for extended periods are potentially subject to growth by cold tolerant pathogens. The growth of *L. monocytogenes* is a risk, as is growth and toxin production by non-proteolytic *C. botulinum*.
- Food cooked at low temperatures for short periods will, in essence, remain raw and pathogenic bacteria, viruses and parasites, if present, might survive.

The established knowledge relating to food safety should not be ignored by experimental chefs. This knowledge has mainly been acquired—the hard way—through food poisoning incidents. Today’s leaders in sous vide produce new and interesting food without losing sight of food safety.
A food safety issue that may be overlooked in sous vide is the proper cleaning of all sous vide equipment (circulators, immersions baths, etc). The frequency and step by step instructions for cleaning should be part of the food safety manual and all staff should be trained.

New technologies such as sous vide apps on smart phones are now widely available. These should be used with caution and the user should still fully understand the food safety implications of using the sous vide method. A few things to remember when using an app for sous vide:

- make sure that you have the latest version (apps are updated frequently and cooking time and temperatures may also be updated),
- ensure you are using an app that is compatible with the type of immersion circulator you are using (some brands have apps for their specific products), and
- ensure the recipe you are following is a sous vide recipe, as some apps offer other types of recipe instructions.

Food safety hazards

1.1 Low temperature cooking – bacterial growth

Scientific literature on bacterial growth in low temperature cooking processes is quite limited. The Food Safety and Inspection Service of the United States Department of Agriculture (FSIS, 1999) mentions the risk of ‘slow come up time’ for certain meat and poultry products. The guideline states that ‘dwell times of greater than 6 hours in the 50°F (10°C) to 130°F (54.4°C) range should be viewed as especially hazardous, as this temperature range can foster the growth of many pathogens of concern’. Food can dwell in this temperature range due to ‘slow come up time’, or by being held for an inordinate amount of time in that range. The guideline notes that the multiplication of pathogens can be so great then even recooking may be ineffective in making the product safe. Toxigenic bacteria can release toxins into the products. Some of the toxins, such as those of *Staphylococcus aureus*, are extremely heat stable and are not inactivated by normal recooking temperatures.

The Food Code (US Food and Drug Administration, 2009) includes several clauses on time as a public health control. Clause 3–501.19 (1) (B), is similar in intent to the ‘2-hour/4-hour rule’ for temperature control outlined in Food Standards Australia New Zealand website (FSANZ, n.d). The US Food Code allows for a maximum of four hours between 5°C and 57°C, whereas the comparable Australian guideline temperatures are 5°C and 60°C.

Low temperature long time (LT LT) cooking is not new. Braising and crockpot are familiar examples used by some steak houses to prepare prime roasts. The main benefit is tenderisation of cheaper meat cuts. Care must be taken if unusually low temperatures are used to achieve an undercooked or rare product.

The main food safety risks of LT LT cooking are *Clostridium perfringens* and bacteria that form potentially hazardous heat stable toxins in food such as Bacillus *cereus* and *S. aureus*. *C. perfringens* appears to be the pathogen best adapted to growth during processing of sous vide meats (Willardsen et al, 1978) and if this organism is effectively controlled, the risks from the other bacteria will be minimal.

The emergence of LT LT cooking can result in some foods being held at temperatures for periods of time that do not comply with Australian or US guidelines. For example, mathematician and published author on sous vide, Douglas Baldwin (2011, 2012, 2022), includes some recipes (tables of cooking times) where the combination of temperature and time is outside the guidelines.
Baldwin only tabulates times that comply with the US Food Code four hour limit for foods that are served unpasteurised. However, for foods that are pasteurised during cooking, he allows up to six hours to reach 54.5°C. This combination of time and temperature challenges two familiar concepts—the ‘temperature danger zone’ and the ‘2-hour/4-hour rule’.

However, based on the comments of The Food Safety and Inspection Service of the United States Department of Agriculture (FSIS, 1999) and the studies by Willardsen et al (1978), the NSW Food Authority accepts that any risk to food safety is low.

Hands-on: Sous vide low temperature long time (LT LT) cooking

This section is about LT LT production of cooked foods. Table 1 and Table 2 have been prepared by Baldwin (personal communications, 2011, 2012). The times shown allow for product heating followed by pasteurisation (Table 1) or cooking (Table 2). The times are estimates and they are prepared using information about heat transfer through foods and the lethal impacts of cooking temperatures on bacteria that are significant causes of foodborne illness.

Where water baths are used it is important that they return to the set temperature quickly after the addition of food. Temperature recovery will be faster if a commercial water bath heater/stirrer with a high power heating element is used. Precise temperature control is important and high technology controllers (often labelled or described as PID controllers) are specified. Operating temperatures should be checked with an accurate, calibrated thermometer.

Table 3 records the holding time required to pasteurise the food after the target temperature has been achieved. It can be used when pouches have in-pack thermometers, for example, in combination steamer/forced convection ovens, high temperature water baths or water cascade systems.

The estimates calculated by Baldwin can be used for cook serve food or food stored for a few days. Extended shelf life cook chill foods or foods with unusual recipes require expert and tailored thermal process development. Estimates of lethality vary depending on the characteristics of food used in the trial. Baldwin’s guidance on his website (2022) provides a good example. Baldwin presents calculations for lean fish based on observations made on cod, and for fatty fish based on observations made on salmon. Process times for salmon are longer than for cod. It is important to note that food composition affects pasteurisation time.

Many factors can affect lethality of pathogens, for example:

- Cox and Bauler (2008) note that the presence of lysozyme and other related enzymes might influence the lethality rate.
- Pasteurisation of cream requires a more severe process than pasteurisation of milk (because the higher fat content protects the bacteria).
- Chocolate requires a severe process to ensure the elimination of *Salmonella*.
- Heavily salted food protects *Listeria* and more severe pasteurisation processes are required.

For a discussion about the variation in published estimates of thermal lethality (*D* and *z*– values) see Warne (2011) and van Asselt and Zwietering (2006).
Table 1. Approximate time (Hours: Minutes) to heat and pasteurise refrigerated beef

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3:33</td>
<td>2:41</td>
<td>2:00</td>
<td>1:30</td>
<td>1:08</td>
<td>0:51</td>
<td>0:40</td>
<td>0:31</td>
<td>0:25</td>
<td>0:20</td>
<td>0:17</td>
<td>0:14</td>
</tr>
<tr>
<td>10</td>
<td>3:35</td>
<td>2:43</td>
<td>2:04</td>
<td>1:36</td>
<td>1:15</td>
<td>1:00</td>
<td>0:49</td>
<td>0:41</td>
<td>0:35</td>
<td>0:30</td>
<td>0:27</td>
<td>0:24</td>
</tr>
<tr>
<td>15</td>
<td>3:46</td>
<td>2:55</td>
<td>2:16</td>
<td>1:48</td>
<td>1:28</td>
<td>1:13</td>
<td>1:02</td>
<td>0:53</td>
<td>0:47</td>
<td>0:42</td>
<td>0:38</td>
<td>0:35</td>
</tr>
<tr>
<td>20</td>
<td>4:03</td>
<td>3:11</td>
<td>2:32</td>
<td>2:04</td>
<td>1:44</td>
<td>1:28</td>
<td>1:17</td>
<td>1:08</td>
<td>1:01</td>
<td>0:56</td>
<td>0:52</td>
<td>0:48</td>
</tr>
<tr>
<td>30</td>
<td>4:29</td>
<td>3:38</td>
<td>3:00</td>
<td>2:32</td>
<td>2:11</td>
<td>1:55</td>
<td>1:43</td>
<td>1:33</td>
<td>1:26</td>
<td>1:19</td>
<td>1:14</td>
<td>1:10</td>
</tr>
<tr>
<td>45</td>
<td>5:21</td>
<td>4:29</td>
<td>3:50</td>
<td>3:22</td>
<td>3:00</td>
<td>2:42</td>
<td>2:29</td>
<td>2:17</td>
<td>2:08</td>
<td>2:00</td>
<td>1:53</td>
<td>1:48</td>
</tr>
</tbody>
</table>

NOTE: Table 1 as provided by Baldwin (personal communication, 2011), differs from his guidance on the website because it is based on the USFDA thermal processing values for seafood. The values in Table 1 are noted to be more conservative and to apply to all foods (USFDA, 2011). These values were also recommended in a report ‘Low temperature cooking of meats’ prepared for Meat and Livestock Australia (MLA) by Warne (2011).

Baldwin’s published tables are calculated based on best fit estimates of thermal inactivation from the results of numerous individual trials. His estimates are science based but more conservative values have routinely been used by regulatory agencies.
Table 2. Approximate time (Hours: Minutes) to heat and cook refrigerated beef

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Water bath temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>1:16</td>
</tr>
<tr>
<td>10</td>
<td>1:24</td>
</tr>
<tr>
<td>15</td>
<td>1:37</td>
</tr>
<tr>
<td>20</td>
<td>1:54</td>
</tr>
<tr>
<td>25</td>
<td>2:08</td>
</tr>
<tr>
<td>30</td>
<td>2:23</td>
</tr>
</tbody>
</table>

Table 2, provided by Douglas Baldwin (personal communication, 2012), is based on thermal processing studies for meat used by the FSIS (2009) in development of their guidance on cooking times. The FSIS guidance is applicable to 1) beef, lamb and veal steaks and roasts, 2) pork chops, ribs and roasts, and 3) fish. Higher temperatures are recommended for poultry, eggs and minced meat.

When water baths are operated at temperatures well above the target temperature for the food or if combination steam/forced convection ovens or water cascade systems are used, food temperatures are usually monitored by probes placed at the slowest heating point of the food. Table 3 shows times for pasteurisation and FSIS cooking of meat chops, roasts and steaks. Timing starts when the core temperature has been reached.
Table 3. Recommended hold time/temperature combinations for pasteurisation\(^4\) and cooking\(^5\) of meats

<table>
<thead>
<tr>
<th>Core temp °C</th>
<th>Pasteurisation time(^6) Minutes : Seconds</th>
<th>Cooking time(^7) Minutes : Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>200:00</td>
<td>69:00</td>
</tr>
<tr>
<td>56</td>
<td>147:00</td>
<td>46:00</td>
</tr>
<tr>
<td>57</td>
<td>109:00</td>
<td>30:00</td>
</tr>
<tr>
<td>58</td>
<td>80:00</td>
<td>20:00</td>
</tr>
<tr>
<td>59</td>
<td>59:00</td>
<td>14:00</td>
</tr>
<tr>
<td>60</td>
<td>44:00</td>
<td>9:00</td>
</tr>
<tr>
<td>61</td>
<td>32:00</td>
<td>6:00</td>
</tr>
<tr>
<td>62</td>
<td>24:00</td>
<td>4:00</td>
</tr>
<tr>
<td>63</td>
<td>18:00</td>
<td>3:00</td>
</tr>
<tr>
<td>64</td>
<td>13:00</td>
<td>2:00</td>
</tr>
<tr>
<td>65</td>
<td>10:00</td>
<td>1:05</td>
</tr>
<tr>
<td>66</td>
<td>7:00</td>
<td>0:42</td>
</tr>
<tr>
<td>67</td>
<td>6:00</td>
<td>0:30</td>
</tr>
<tr>
<td>68</td>
<td>4:00</td>
<td>Less than 20 seconds</td>
</tr>
<tr>
<td>69</td>
<td>3:00</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>2:00</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1:29</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1:05</td>
<td></td>
</tr>
</tbody>
</table>

\(^4\) Pasteurisation – a 6-log reduction for \textit{L. monocytogenes} process applicable to all foods

\(^5\) Cooking – a 6.5 log reduction for \textit{Salmonella} process for meats excluding poultry

\(^6\) Adapted from Warne (2011). Seconds are only shown for short processes and other times have been rounded to the next minute

\(^7\) Figures have been interpolated from FSIS (2009) guidance and have also been rounded up
<table>
<thead>
<tr>
<th>Core temp °C</th>
<th>Pasteurisation time<sup>6</sup> Minutes : Seconds</th>
<th>Cooking time<sup>7</sup> Minutes : Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>0:48</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>0:36</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0:26</td>
<td></td>
</tr>
<tr>
<td>76+</td>
<td>Less than 20 seconds</td>
<td></td>
</tr>
</tbody>
</table>

1.2 Product cooling – bacterial growth

The potential for bacterial growth during cooling and reheating of *sous vide* foods is no different from conventional processes. The Food Standards Code addresses the issue and guidance is available in *Safe Food Australia* (2016).

C. perfringens is the major cause of foodborne illness associated with inadequate cooling and reheating of foods. This pathogen has important characteristics that result in it being a regular cause of foodborne illness:

- It forms a tough heat resistant spore that is not killed during normal cooking. Under suitable conditions the spore will germinate to produce actively growing bacteria.
- It grows in the absence of oxygen and food packed under vacuum in a pouch provides an ideal environment for growth.
- The bacteria can grow exceptionally quickly in warm food, especially meat. They will double in number every ten minutes at optimal temperatures and grow quickly in the range of 30 to 50°C.
- When temperature-abused food is consumed, the bacteria will form spores in the gut and, in the process, release a toxin. If large numbers of the bacteria were present in the food, the toxin will result in food poisoning with profuse diarrhoea and severe cramping pain.

Hands-on: sous vide cooling

Baldwin (2022) provides a very useful guidance on cooling *sous vide* products in slush ice. This method is commonly used in restaurants and homes. Table 4 shows approximate cooling times in slush ice (i.e. ice water bath that is at least half ice) for food in a pouch. The times depend on the thickness and shape of the food. Note that as the thickness of a food doubles the cooling time triples.

Large restaurants, caterers and ready meal companies might use blast chillers or water cascade systems for cooling. In these systems cooling is usually monitored using in-pack temperature probes. Some businesses with good portion control, sufficient historical data and well controlled equipment will be able to validate cooling cycles. In-pack probes or tip sensitive digital thermometers could then be used to verify internal temperatures at reduced frequency.
Table 4. Approximate cooling time (Hours: Minutes) from 55–80°C to 5°C for *sous vide* food in slush ice

<table>
<thead>
<tr>
<th>Food thickness (mm)</th>
<th>Food shape</th>
<th>Slab-like</th>
<th>Cylinder-like</th>
<th>Sphere-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>0:05</td>
<td>0:03</td>
<td>0:03</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0:14</td>
<td>0:08</td>
<td>0:06</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0:25</td>
<td>0:14</td>
<td>0:10</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0:35</td>
<td>0:20</td>
<td>0:15</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0:50</td>
<td>0:30</td>
<td>0:20</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1:15</td>
<td>0:40</td>
<td>0:30</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>1:30</td>
<td>0:50</td>
<td>0:35</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1:45</td>
<td>1:00</td>
<td>0:45</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>2:15</td>
<td>1:15</td>
<td>0:55</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>2:45</td>
<td>1:30</td>
<td>1:00</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>3:15</td>
<td>1:45</td>
<td>1:15</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>3:45</td>
<td>2:00</td>
<td>1:30</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>4:15</td>
<td>2:15</td>
<td>1:45</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>4:45</td>
<td>2:45</td>
<td>2:00</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>5:30</td>
<td>3:00</td>
<td>2:15</td>
</tr>
<tr>
<td>80</td>
<td>–</td>
<td></td>
<td>3:30</td>
<td>2:30</td>
</tr>
<tr>
<td>85</td>
<td>–</td>
<td></td>
<td>3:45</td>
<td>2:45</td>
</tr>
<tr>
<td>90</td>
<td>–</td>
<td></td>
<td>4:15</td>
<td>3:00</td>
</tr>
<tr>
<td>95</td>
<td>–</td>
<td></td>
<td>4:45</td>
<td>3:30</td>
</tr>
<tr>
<td>100</td>
<td>–</td>
<td></td>
<td>5:00</td>
<td>3:45</td>
</tr>
<tr>
<td>105</td>
<td>–</td>
<td></td>
<td>5:30</td>
<td>4:00</td>
</tr>
<tr>
<td>110</td>
<td>–</td>
<td></td>
<td>6:00</td>
<td>4:30</td>
</tr>
<tr>
<td>115</td>
<td>–</td>
<td></td>
<td></td>
<td>4:45</td>
</tr>
</tbody>
</table>
Standard 3.2.2 of the Food Standards Code requires:

- A food business must, when cooling cooked potentially hazardous food, cool the food:
 - Within two hours – from 60°C to 21°C; and
 - Within a further four hours – from 21°C to 5°C;
- unless the food business demonstrates that the cooling process used will not adversely affect the microbiological safety of the food.

Sous vide food of suitable thinness and shape will comfortably meet cooling time targets when cooled in slush ice, blast chillers or water cascade systems.

1.3 Extended refrigerated storage of food – botulism

Botulism is a term used to describe an intoxication caused by *C. botulinum* neurotoxins. From a food safety point of view *C. botulinum* remains one of the most important foodborne bacteria. It is characterised by its:

- growth in the absence of air,
- production of a tough spore that survives normal cooking,
- growth across a wide temperature range, including some strains that grow at refrigeration temperatures, and
- production of the most potent group of biological neurotoxins known (Szabo and Gibson, 2003).

A product stored in a sealed pouch, prepared using a delicate cooking cycle and stored refrigerated for lengthy periods, presents an environment where non-proteolytic (cold-tolerant) strains of *C. botulinum* are an undoubted hazard. Most of the food safety concerns about these types of products have been focussed on the potential for growth and toxin production by these strains.

In 2008, the UK Food Standards Agency (UKFSA) provided guidance on the safety and shelf life of vacuum packed and modified atmosphere packed chilled foods with respect to non-proteolytic *C. botulinum*. The UKFSA summarised the recommendations of their Advisory Committee on the Microbiological Safety of Food (ACMSF, 1992, 2007) on vacuum packaging and associated processes. The ACMSF (2007) recommended a maximum of ten day shelf life for vacuum and modified atmosphere foods stored between 3°C and 8°C when other controlling factors could not be identified. The report noted that at less than 3°C the growth of non-proteolytic *C. botulinum* does not occur and that foods stored at less than 3°C are outside the scope of the guidance.

The ACMSF recommended that, in addition to chill temperatures which should be maintained throughout the food chain, the following control factors should be used singly or in combination to prevent growth and toxin production by non-proteolytic *C. botulinum* in chilled foods with a shelf life of more than ten days:

- A heat treatment of 90°C for 10 minutes or equivalent lethality.
- A pH of 5 or less throughout the food and throughout all components of complex foods.
- A minimum salt level of 3.5% in the aqueous phase throughout the food and throughout all components of complex foods.
- A water activity of 0.97 or less throughout the food and throughout all components of complex foods.
- A combination of heat and preservative factors which can be shown consistently to prevent growth and toxin production by cold tolerant *C. botulinum*.

A comprehensive Australian hands-on guidance has been prepared by Cox and Bauler (2008).
1.4 Extended refrigerated storage of food – listeriosis

Foodborne listeriosis is a relatively rare but serious disease with high fatality rates (20–30%) compared with other foodborne microbial pathogens, such as *Salmonella*. The disease largely affects specific segments of the population who have increased susceptibilities.

L. monocytogenes is an opportunistic pathogen that most often affects:

- people with a severe underlying disease or condition, e.g. immunosuppression, HIV/AIDS and chronic conditions such as cirrhosis that impair the immune system,
- pregnant women,
- unborn or newly delivered infants, and
- the elderly.

L. monocytogenes is widely dispersed in the environment and foods. An important factor in foodborne listeriosis is that the pathogen can grow to significant numbers at refrigeration temperatures when given sufficient time. Although listeriosis is a relatively rare disease, the severity of the disease and the very frequent involvement of industrially processed foods, especially during outbreaks, mean that the social and economic impact of listeriosis is among the highest of the foodborne diseases (WHO, 2004).

Cox and Bauler (2008) provide the following guidance on control of *L. monocytogenes* in cook chill foods:

- Because of its sensitivity to heat, cooking will reduce the number of *L. monocytogenes* by 1,000,000-fold provided all parts of the food reach a temperature of, or equivalent to, 75°C. This is known as a 6D process.
- Although growth does not stop, storage at 5°C or below will substantially slow the growth of *L. monocytogenes* in cook chill foods.
- Limiting the storage time and/or shelf life are other major controls that can be used.

Hands-on: refrigerated storage of sous vide foods

Modern culinary *sous vide* is less about extended storage and more about taste. For example, Thomas Keller’s book, *Under Pressure* (2008), does not encourage storage for extended periods unless the food is frozen. The book focuses on the gastronomic benefits of cooking under vacuum at very controlled temperatures. Food safety is accentuated upfront and if others follow his storage advice *C. botulinum* will not be a risk. Baldwin (2022) provides sound advice on storage temperatures with only brief storage periods recommended at temperatures above 3.3°C.

The NSW Food Authority’s default guidance for *sous vide* food and certain other products in sealed packages which are protected from contamination after thermal processing, is below:

- With a 90°C/10 minute equivalent cook and storage at 5°C – shelf life as validated.
- With a 70°C/2 minute equivalent cook and storage at less than 3°C – shelf life as validated.
- With a 70°C/2 minute equivalent cook and storage at 5°C – a 10 day shelf life.

The process controls and support programs required to validate an extended shelf life are generally not plausible in a busy restaurant kitchen. Restaurants should limit refrigerated storage of pasteurised *sous vide* foods to ten days. Cooked but not pasteurised foods should only be held refrigerated for brief periods. Kennedy (2004) refers to ‘short term cook chill’ and notes that it is often called ‘5-day cook chill’, as that is a common time period used by mass caterers. Five days at 5°C is the recommended upper limit for storage of cooked but not pasteurised *sous vide* food.
1.5 Product reheating – bacterial growth

The potential for bacterial growth during cooling and reheating of sous vide foods is no different to conventional processes, and the guidance documents mentioned in section 1.2 are relevant.

C. perfringens is commonly encountered in food service and home catering settings. Often large portions of food and more than one failure to handle food safely are involved. Examples include the following:

- A restaurant cooks a casserole, curry or chilli in a large stock pot, cools it for two hours on the kitchen bench and refrigerates it overnight. The food is ladled into a tray in the hot display to reheat and then served at lunch time. The food at the centre of the stock pot never cooled and slowly reheated to only a low temperature while on display. *C. perfringens* grew to very large numbers and many customers developed food poisoning.

- A large roast, e.g. a turkey, was cooked the day before a large family function. It was cooled on the bench for several hours, wrapped in aluminium foil and then refrigerated. It was reheated briefly in an overworked oven prior to service. The food was not properly cooled or reheated. *C. perfringens* grew to large numbers and caused illness in many that attended the function.

Small portions of sous vide food are relatively easy to cool and reheat. With attention to detail, the risk of *C. perfringens* in small pouches of sous vide food can be controlled.

Hands-on: sous vide reheating

Baldwin (2022) tabulates heating times for sous vide products in a finely controlled water bath. These times provide useful guidance on reheating of foods. Table 5, which derived from the guide in his website, shows approximate heating times for refrigerated food in a pouch to a temperature 0.5°C below the temperature of the water bath.

Baldwin also provides times for heating food from frozen (Table 6). Time limits are extended by three hours to allow time for the food to thaw and enter the temperature danger zone.

Small portions of sous vide foods can be reheated in required time frames. Faster heating times can be achieved by using higher water bath temperatures. Sous vide food for larger functions could be reheated using a combination steam/forced convection oven. For these methods, reheating is usually monitored using in-pack temperature probes. Some businesses with good portion control, sufficient historical data and well controlled equipment will have validated reheating cycles. In-pack probes or tip sensitive digital thermometers would be used to verify internal temperatures at reduced frequency.

There may be foods where suggested temperatures are inconsistent with the production of very rare or undercooked foods. These foods are best prepared as cook–serve foods.

Standard 3.2.2 Clause 7(4) of the Food Standards Code requires:

A food business must, when reheating previously cooked and cooled potentially hazardous food to hold it hot, use a heat process that rapidly heats the food to a temperature of 60°C or above, unless the food business demonstrates that the heating process used will not adversely affect the microbiological safety of the food.
The clause is subjective and guidance is provided in *Safe Food Australia* (FSANZ, 2016):

This requirement only applies to potentially hazardous food that is to be held hot, for example in a bain marie. It does not apply to food that is being heated for immediate consumption. This food can be heated to any temperature as it is not being heated for holding hot.

Potentially hazardous food that has been previously cooked and cooled and is to be held hot must be heated rapidly to a temperature of 60°C or above. ‘Rapidly’ has not been defined, but the time taken to heat all the food to 60°C should not exceed two hours.

A food business may use an alternative heating process if the business can demonstrate that the alternative process does not compromise the microbiological safety of the food.

Sous vide enthusiasts prefer not to reheat using a temperature above that used during cooking. Baldwin (2022), for example, refers to meat typically being reheated at 55°C since the ideal serving temperature for meat is 50° to 55°C. The Food Standards Code does not establish parameters for reheating food for immediate service, except to generally require that food is safe. The ‘2-hour/4-hour rule’ provides a general guidance.

The 2-hour/4-hour rule provides options for what can be done safely with ready-to-eat potentially hazardous food, depending on how long it has been at temperatures between 5°C and 60°C.

The time between 5°C and 60°C is cumulative — that means every time the food has been out of the fridge, including during preparation, storage, transport and display, it must be added up.

If the total time is:

- Less than 2 hours, the food can be used or put back in the refrigerator for later use,
- Between 2 and 4 hours, the food can still be used, but can’t be put back in the refrigerator, and
- 4 hours or longer, the food must be thrown out.

For compliance with the guidance documents prepared to support the Food Standards Code, Table 5 and Table 6 should be used as follows:

- For pasteurised or cooked and properly cooled foods to be reheated for hot holding food: the objective is to heat food to 60°C within 2 hours – reheat in a 60.5°C (or higher) water bath for the times shown in the light green colour-coded cells of Table 5 or Table 6.
- For pasteurised or cooked and properly cooled foods to be reheated for immediate service: the Food Standards Code does not prescribe a time limit but a reasonable target is 4 hours (the ‘2-hour/4-hour rule’) – reheat in a 55°C (or higher) water bath for the times shown in the light green or dark green colour-coded cells of Table 5 or Table 6.
- For larger portions of pasteurised or cooked and properly cooled foods to be reheated for immediate service: the Food Standards Code does not prescribe a time limit but a reasonable target is to heat the food to 60°C within 4 hours (the ‘2-hour/4-hour rule’) – this can be achieved using higher water bath temperatures and checking the temperature at the centre of the food with a tip sensitive digital thermometer. However, the use of a 60.5°C water bath for the times shown in the pale orange colour-coded cells in Table 5 or Table 6 will be low risk.
Table 5. Approximate heating time (Hours: Minutes) for refrigerated sous vide food to 0.5°C less than the water bath’s temperature

<table>
<thead>
<tr>
<th>Food thickness (mm)</th>
<th>Food shape</th>
<th>Slab-like</th>
<th>Cylinder-like</th>
<th>Sphere-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>0:05</td>
<td>0:05</td>
<td>0:04</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0:19</td>
<td>0:11</td>
<td>0:08</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0:35</td>
<td>0:18</td>
<td>0:13</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0:50</td>
<td>0:30</td>
<td>0:20</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1:15</td>
<td>0:40</td>
<td>0:25</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1:30</td>
<td>0:50</td>
<td>0:30</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>2:00</td>
<td>1:00</td>
<td>0:45</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>2:30</td>
<td>1:15</td>
<td>0:55</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>3:00</td>
<td>1:30</td>
<td>1:15</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>3:30</td>
<td>2:00</td>
<td>1:30</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>4:00</td>
<td>2:15</td>
<td>1:30</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>4:45</td>
<td>2:30</td>
<td>2:00</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>5:30</td>
<td>3:00</td>
<td>2:15</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>3:30</td>
<td>3:30</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td>3:45</td>
<td>3:45</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>4:15</td>
<td>4:00</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td>4:45</td>
<td>4:30</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>5:15</td>
<td>5:45</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td>6:00</td>
<td>4:15</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>4:45</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td>5:00</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>5:50</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td>6:00</td>
</tr>
</tbody>
</table>

From Baldwin (2022).
Table 6. Approximate heating time (Hours: Minutes) for frozen *sous vide* food to reach 0.5°C less than the water bath’s temperature

<table>
<thead>
<tr>
<th>Food thickness (mm)</th>
<th>Food shape</th>
<th>Slab-like</th>
<th>Cylinder-like</th>
<th>Sphere-like</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0:07</td>
<td>0:07</td>
<td>0:06</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0:30</td>
<td>0:17</td>
<td>0:12</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0:50</td>
<td>0:30</td>
<td>0:20</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1:15</td>
<td>0:40</td>
<td>0:30</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1:45</td>
<td>0:55</td>
<td>0:40</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>2:15</td>
<td>1:15</td>
<td>0:55</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>3:00</td>
<td>1:30</td>
<td>1:15</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>3:30</td>
<td>2:00</td>
<td>1:30</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>4:30</td>
<td>2:30</td>
<td>1:45</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>5:15</td>
<td>2:45</td>
<td>2:00</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>5:15</td>
<td>3:15</td>
<td>2:30</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>7:15</td>
<td>4:00</td>
<td>2:45</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>8:15</td>
<td>4:15</td>
<td>3:15</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>–</td>
<td>5:00</td>
<td>3:45</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>–</td>
<td>6:45</td>
<td>4:15</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>–</td>
<td>8:30</td>
<td>4:45</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>–</td>
<td>7:15</td>
<td>3:15</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>–</td>
<td>8:00</td>
<td>3:45</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>–</td>
<td>8:45</td>
<td>3:15</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>–</td>
<td>–</td>
<td>5:00</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>–</td>
<td>–</td>
<td>7:00</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>–</td>
<td>–</td>
<td>8:15</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>–</td>
<td>–</td>
<td>9:00</td>
</tr>
</tbody>
</table>

From Baldwin (2022)
1.6 Serving raw or undercooked foods – infectious bacteria, parasites and viruses

The US Centers for Disease Control and Prevention nominate a number of simple precautions that consumers can use to protect themselves from foodborne diseases (CDC, 2010). The first of these is:

Cook meat, poultry and eggs thoroughly. Using a thermometer to measure the internal temperature of meat is a good way to be sure that it is cooked sufficiently to kill bacteria.

Many other food agencies make very similar recommendations including the NSW Food Authority (NSWFA, 2011c). Despite the advice, people still choose to eat a wide variety of raw or undercooked animal products. For example:

<table>
<thead>
<tr>
<th>Carpaccio</th>
<th>Yukhoe</th>
<th>Rare hamburger</th>
<th>Egg nog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceviche</td>
<td>Steak tartare</td>
<td>Sashimi</td>
<td>Kibbeh</td>
</tr>
<tr>
<td>Egg butter</td>
<td>Tiramisu</td>
<td>Raw Milk Cheese</td>
<td></td>
</tr>
</tbody>
</table>

The risk with these foods is related to the potential and, in some cases, likely presence of pathogenic bacteria, parasites or viruses. The risks can be illustrated by:

- **disease prevalence statistics:**
 - *Vibrio parahaemolyticus* infection accounted for 45–60% of food related infections in Japan (Berger, 2011). This organism is associated with seafood and the illness is related to the high consumption of raw seafood in Japan.
 - In France, more than 200 cases of hepatitis E are reported each year. It has been shown in developed industrialised countries that pigs are reservoirs of the virus. Acute hepatitis E has been linked to persons who consumed uncooked pig liver sausages. These sausages are good candidates for the transmission of hepatitis E because they are made with pig liver, are not cooked during the manufacturing process, and are often eaten uncooked (ProMed Mail, 2011).
 - In April 2014, the first reported HEV outbreak was reported in Australia. Analytical evidence linked the outbreak to consumption of pork liver pâté (Communicable Diseases Branch, 2015).

- **outbreak reports:**
 - In April and May 2011, there was a food poisoning outbreak in Japan caused by enterohemorrhagic *E. coli* O111:H8 and O157:H7 from raw beef dishes at branches of a barbeque restaurant. The outbreak affected 181 people and five people died (Watahiki et al., 2014).
 - Nine cases of paragonimiasis (a parasitic infection) were caused by the consumption of raw or undercooked crayfish in Missouri (CDC, 2010).
 - In 2010, a *Salmonella* outbreak in Albury, Australia affected 179 people. Home-made aioli, a garlic mayonnaise that includes raw egg, was the cause (NSWFA, 2011b).

- **other sources:**
 - In recent decades, the custom of eating foods raw, or only partially cooked, has grown worldwide and has led to the emergence of parasitic diseases in ethnic groups where eating raw or undercooked meat was not previously common (Macpherson, 2005).
 - Three large studies in Europe have pinpointed uncooked meat as the most important risk factor for *Toxoplasma gondii* infection in pregnant women. Toxoplasmosis is generally considered a serious health
problem in pregnant women, who can pass the infection to the foetus or newborn, and in people who are immunocompromised (Kijlstra & Jongert, 2008).

- The tradition of eating raw fish is becoming increasingly fashionable in many countries. This had led to a dramatic rise in the incidence of fish borne parasitic infections in previously unaffected ethnic groups (Macpherson, 2005).

- All wild caught seawater and freshwater fish must be considered at risk of containing viable parasites of human health concern if these products are to be eaten raw or almost raw (EFSA, 2010).

- A range of traditional Japanese dishes utilise the addition of raw egg, for examples tsukimi udon/soba, sukiyaki, tamago kake gohan, oyakodon and natto. Eggs have caused a number of food poisoning cases in Japan since 1989 (Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, n.d.).

Some *sous vide* recipes call for low temperature short time (LT ST) cooking and in some cases the final food remains raw or undercooked. Such foods have a higher risk of causing bacterial, viral or parasitic illness.

Hands-on: safer alternatives – raw and undercooked animal products

Businesses must be aware that meat, seafood and eggs that have not been cooked present an increased level of food safety risk to consumers. These products should not be used for cook chill food service.

Vulnerable people such as children, the elderly, immunocompromised people or those with a serious illness are at greater risk of suffering from the more severe consequences of foodborne illness. Notifying these members of the vulnerable population can be done by written warnings on menus, posting signs and verbal disclosure by staff.

Table 7. Recommended control measures to improve the safety of raw and undercooked animal products

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Control measures</th>
</tr>
</thead>
</table>
| **Seafood: Parasites** | • Purchase safer fish: marine fish are safer than freshwater fish; farmed (pellet feed) fish are safer than wild caught fish; higher value marine fish (tuna, Atlantic salmon) are safer than lower value marine fish (mackerel, squid)\(^8\).
• Carefully examine fish during cleaning and filleting. Parasites are small but many can be seen with the naked eye or when fillets are ‘candled’ (a strong light is shone through the fillet).
• Use the freshest, best quality fish that is inspected during processing.
• Freeze fish prior to preparation. For fish to be consumed without adequate cooking, the European Food Safety Agency (EFSA, 2010) requires the following:
 - Freeze at -15°C for at least 96 hours, or
 - Freeze at -20°C for at least 24 hours, or
 - Freeze at -35°C for at least 15 hours.
• Cook all parts of the fish to 60°C for 1 minute (EFSA, 2010). This mild cooking process will be compatible with many fish recipes. |

\(^8\) Information on parasites that impact the safety of seafood is provided in the *Risk Assessment of the Seafood Safety Scheme* on the Food Authority’s website.
### Hazard	Control measures
Seafood: Bacteria
- The main bacterial pathogen of marine origin in Australia (*Vibrio parahaemolyticus*) dies when exposed to refrigeration temperatures (ICMSF, 1996a) and is inactivated by fairly mild cooking temperatures (van Asselt & Zwietering, 2006). However, fish contaminated with bacteria from the kitchen environment or food handlers might not be made safe after mild cooking processes.
- Do not cook minced or reformed seafood (including fish cakes and products formed using transglutaminase or other ‘meat glues’) using low temperature short time (LT ST) processes.
- The ‘parasite cook’ recommended by EFSA will provide control of *V. parahaemolyticus*.

Meat: Parasites
- Purchase through reputable supply chains. Meat inspection prevents meat infected with many, but not all, parasites from being marketed.
- Freeze meat prior to preparation. The EFSA fish freezing requirements above will provide useful control.

Meat: Bacteria
- Do not cook mechanically tenderised, minced, pumped, rolled or reformed meats (including meats prepared using ‘meat glue’) using low temperature short time (LT ST) processes.
- Avoid very low temperature cooking. Water bath temperatures above 55°C and, more generally, meat surface temperatures above 54.5°C will provide a measure of decontamination as cooking proceeds.
- **Sous vide** chefs should test recipes to see if slightly higher temperatures can be used. Figure 2 shows relative thermal inactivation of *Salmonella*, generated by the ComBase predictive microbiology modelling website. The yellow curve shows some reduction at 54.5°C with increasing lethality at 55°C (pink), 55.5°C (orange) and 56°C (blue). A small increase in temperature above 54.5°C will provide markedly increased destruction of surface bacteria. As noted above, bacteria are typically found on the surface of meat providing it has not been tenderised, minced, pumped, rolled, reformed or ‘glued’.

Eggs: Bacteria
- **Sous vide** recipes that result in fully cooked eggs are available and their use is recommended. Strict time/temp for fully cooked eggs should be observed as undercooked *sous vide* eggs were one of the implicated sources of a Canadian foodborne illnesses reported in 2014.

As an alternative to serving raw or undercooked foods, chefs should consider serving cooked food prepared using times and temperatures from Table 2 or Table 3.

9 Refer to the *Food Safety Guidelines for the Preparation of Raw Egg Products* on the Food Authority’s website
Figure 2. Hypothetical thermal destruction of *Salmonella* at temperatures from 54.5°C to 56°C

Key: Yellow (top line) 54.5°C; Pink (2nd line) 55°C; Orange (3rd line) 55.5°C; and Blue (bottom line) 56°C.

Scale: -2 = 99% reduction; -4 = 99.99% reduction; -6 = 99.9999% reduction of *Salmonella*.

Additional notes:

- Equipment (portable circulators in particular). The accuracy of many models is hard to determine, making temperature management a concern. Monitoring and maintenance of equipment is extremely important as temperature is a key indicator that the food will be safe to consume at the end of the process.

- All equipment used for *sous vide* needs must undergo thorough cleaning and sanitising at regular intervals and the process must be documented. This should be reflected in the food safety plan for *sous vide* cooking. Lack of cleaning and sanitising may lead to problems such as biofilm build up.

- Appropriate food-grade bags must be used. Vacuum sealed bags may leak if heated for a very long time. The integrity of the bag may also be compromised if inferior quality bags are used.

- It is important to take temperatures precisely when verifying *sous vide* protocols. Necessary equipment includes a calibrated thermometer (to 0.1 degrees), cell foam tape and a document to record temperatures. Internal digital probe tip thermometers must be used to monitor temperatures. Thermometers should be calibrated, traceable and certified (BCCDC, 2017).
Conclusion

Sous vide seems like a new food service technology but it has a history spanning five decades in France and three decades in other countries. It has been found in many markets including extended shelf life ready meals. Today it is used by catering companies, restaurants and, increasingly, home cooks.

There are risks with the *sous vide* process that must be managed. Leading *sous vide* chefs are aware of these risks and food safety has been a prominent focus in their kitchens and recipe books. As far as can be determined from the scientific literature and foodborne illness databases, *sous vide* chefs have been successful in managing food safety and food poisoning attributed to *sous vide* has rarely been identified.

The risks associated with *sous vide* foods can be reduced if:

- thinner portions of food are prepared so that heating and cooling are rapid.
- products are not placed in the water bath tightly on top of each other. Overcrowding affects cooking times and increases the chance of cold spots occurring.
- water bath temperatures of at least 55°C are used so that the growth of *Clostridium perfringens* is first prevented and then destruction of the cells commences.
- the time food is held at temperatures below 54.5°C during cooking is limited to 6 hours.
- professional equipment with adequate heating capacity and excellent temperature control is used.
- water and/or food temperatures are checked using a tip sensitive digital thermometer that is accurate to 0.1°C.
- prepared foods are not stored for extended times unless processes have been validated.
- risks are not compounded. Cooking large portions of mechanically tenderised meat for extended times at low temperatures would be irresponsible.

If you choose to include on your menu foods that remain essentially raw, you must make clear the health implications the food could pose to the consumer.

New practitioners of *sous vide* must be aware of the food safety risks and avoid overly experimental applications of the technology.
References

CDC. (2010). Human paragonimiasis after eating raw or undercooked crayfish – Missouri, July 2006–September 2010, Retrieved from https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5948a1.htm

Appendix – Variation to the 2-hour/4-hour rule

Information contained in this document is consistent with the Australia New Zealand Food Standards Code and its associated guidance materials. However, section 1.1 includes some cooking times that are inconsistent with the ‘2-hour/4-hour rule’. The tables were developed and published by Baldwin (2011).

Baldwin is very widely quoted in food enthusiast circles. Some of his sous vide work is published in peer reviewed journals and his self-published material is submitted to food scientists prior to publication. Baldwin wrote his Sous Vide cook book while a PhD student in mathematics. He is a sous vide enthusiast and has turned his mathematical prowess to establishing cooking times for sous vide foods. Food safety is prominent in his book and web-based guidance material.

Baldwin only tabulated times that comply with the U.S. Food Code 4 hour limit for foods that are served unpasteurised. However, for foods that are to be pasteurised he allows up to 6 hours to reach 54.4°C. This limit is based on data presented in a paper by Willardsen et al. (1978) and is designed to limit the growth of *C. perfringens* prior to pasteurisation. That means that cooking cycles for thicker cuts are limited to higher temperature water baths so that internal temperatures reach target within 6 hours.

The tables are designed so that the food spends a maximum of 2 hours and 10 minutes at temperatures where *C. perfringens* growth is rapid, i.e. 35°–54.4°C (Douglas Baldwin personal communication 13 August 2011). Willardsen et al (1978) note that *C. perfringens* is the organism of primary concern in LT LT cooking of beef because of its rapid growth at relatively high temperatures and its ability to cause illness. The figure below from Willardsen et al. (1978) is informative.

Two trials on the growth of *C. perfringens* in autoclaved beef are shown. In both cases the temperature rises 7.5°C per hour. In one trial the initial temperature is ~12.5°C and in the other trial the initial temperature is 25°C. In both trials, growth does not occur or is slow until above 30°C and inactivation of the cells starts between 50°C and 55°C. The ICMSF (1996b) notes that the optimum growth temperature for *C. perfringens* is 43°–47°C, which is consistent with the graph.
Another figure from Willardsen et al. displays the growth of *C. perfringens* at constantly rising temperatures with rates of increase from 4.1°C to 12.5°C per hour.

![Graph showing growth of C. perfringens](image)

Slow rates of temperature increase lead to large numbers of *C. perfringens* and high rates of temperature increase result in much lower numbers. The graphs also show the rapid decrease in cell numbers at temperatures between 50°C and 55°C.

The limit of 2 hours and 10 minutes between 35°C and 54.4°C implies a temperature rise of about 9°C per hour, resulting in a significant reduction in growth compared to lower temperatures. In sous vide systems with water bath temperatures set at 55°C the temperature increase is likely to exceed 9°C per hour at 35°C and tail off towards 55°C.

The combination of the short time at temperatures where growth of *C. perfringens* is rapid, the higher rate of temperature increase and the subsequent rapid decrease in cell numbers, support the opinion that any residual risk is low.